Số: \(\overline{4a78b}\) chia 5 dư 2 nên sẽ có chữ số tận cùng là 2 hoặc 7 \(\Rightarrow b\in\left\{2;7\right\}\)
Mà số này lại chia hết cho 3 nên: \(4+a+7+8+b=19+a+b\) ⋮ 3
Với b = 2
\(19+a+2=21+a\)
TH1: \(21+a=21\Rightarrow a=0\)
TH2: \(21+a=24\Rightarrow a=3\)
TH3: \(21+a=27\Rightarrow a=6\)
TH4: \(21+a=30\Rightarrow a=9\)
Với b = 7
\(19+a+7=26+a\)
TH1: \(26+a=27\Rightarrow a=1\)
TH2: \(26+a=30\Rightarrow a=4\)
TH3: \(26+a=33\Rightarrow a=7\)
Vậy các số (a;b) thỏa mãn là: \(\left(0;2\right);\left(3;2\right);\left(6;2\right);\left(9;2\right);\left(1;7\right);\left(4;7\right);\left(7;7\right)\)
Do 4a78b chia 5 dư 2 nên b = 2 hoặc b = 7
*) b = 2
4a782 ⋮ 3 khi 4 + a + 7 + 8 + 2 = (21 + a) ⋮ 3
⇒ a = 0; a = 3; a = 6; a = 9
*) b = 7
4a787 ⋮ 3 khi 4 + a + 7 + 8 + 7 = (26 + a) ⋮ 3
⇒ a = 1; a = 4; a = 7
Vậy ta tìm được các cặp giá trị (a; b) thỏa mãn:
(0; 2); (3; 2); (6; 2); (9; 2); (1; 7); (4; 7); (7; 7)