ta có
\(\Delta\)=( -m )2 -4.1.( -3m-1) =m2 +12m+4
Để phương trình >0
\(\Leftrightarrow\) \(\Delta\)>0
\(\Leftrightarrow\) m2 +12m+4>0
\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)
ta có
\(\Delta\)=( -m )2 -4.1.( -3m-1) =m2 +12m+4
Để phương trình >0
\(\Leftrightarrow\) \(\Delta\)>0
\(\Leftrightarrow\) m2 +12m+4>0
\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình sau có nghiệm thực trong đoạn 5 4 ; 4 m - 1 + log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 x - 2 + 4 m - 4 = 0
A. m > 7 3
B. - 3 < m < 7 3
C. - 3 ≤ m ≤ 7 3
D. m < - 3
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình sau có nghiệm thực trong đoạn 5 4 ; 4 m - 1 + log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 x - 2 + 4 m - 4 = 0
A. m > 7 3
B. - 3 < m < 7 3
C. - 3 ≤ m ≤ 7 3
D. m < - 3
Cho hàm số y = x 3 - 3 x 2 - m (m là tham số) có đồ thị C m . Tập hợp các giá trị của tham số m để đồ thị C m cắt trục hoành tại ba điểm phân biệt là tập hợp nào sau đây?
Tập nghiệm của bất phương trình log 3 x ≤ log 1 3 2 x là nửa khoảng ( a ; b ] . Giá trị của a 2 + b 2 bằng
A. 1
B. 4
C. 1 2
D. 8
Tìm tất cả các giá trị của m để phương trình log 3 2 x − m + 2 log 3 x + 3 m − 1 = 0 có 2 nghiệm x 1 , x 2 sao cho x 1 . x 2 = 27
A. m=25
B. m=1
C. m=4/3
D. m=28/3
Cho biểu thức P = 2n+1 / n+1
a) Tìm n để P thuộc Z
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của P
Tìm tất cả các giá trị của tham số a để đồ thị hàm số y = x 2 + a x 3 + a x 2 có 3 đường tiệm cận
A. a < 0, a ≠ 1
B. a > 0
C. a ≠ 0 , a ≠ ± 1
D. a ≠ 0 , a ≠ - 1
Tìm tất cả các giá trị của tham số m để hàm số y = ( m 2 - 1 ) x 4 - 2 m x 2 đồng biến trên khoảng ( 1 ; + ∞ )
A. m ≤ - 1
B. m = -1 hoặc m > 1 + 5 2
C. m ≤ - 1 hoặc m ≥ 1 + 5 2
D. m ≤ - 1 hoặc m > 1
Tìm tất cả các giá trị thực của tham số m để hàm số y = log 2 log 5 m - 2 2 + 2 m - 3 x + m có tập xác định là ℝ.
A. m≤ 7/3.
B. m >7/3.
C. m ≥7/3.
D. m< 7/3.
Tìm tập nghiệm của bất phương trình 3 2 x + 1 - 3 x + 1 ≤ x 2 - 2 x là:
A. 0 ; + ∞
B. 0 ; 2
C. [ 2 ; + ∞ )
D. [ 2 ; + ∞ ) ∪ 0