\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\) (1)
Do \(\left(2a+1\right)^2\ge0\)
\(\left(b+3\right)^4\ge0\)
\(\left(5c-6\right)^2\ge0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
\(\left(1\right)\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
\(\Rightarrow\left(2a+1\right)^2=0;\left(b+3\right)^4=0;\left(5c-6\right)^2=0\)
*) \(\left(2a+1\right)^2=0\)
\(\Rightarrow2a+1=0\)
\(2a=-1\)
\(a=-\dfrac{1}{2}\)
*) \(\left(b+3\right)^4=0\)
\(\Rightarrow b+3=0\)
\(b=-3\)
*) \(\left(5c-6\right)^2=0\)
\(\Rightarrow5c-6=0\)
\(5c=6\)
\(c=\dfrac{6}{5}\)
Vậy \(a=-\dfrac{1}{2};b=-3;c=\dfrac{6}{5}\)