1) \(2x+5\sqrt{x}-7=2\left[\left(x+\dfrac{5}{2}\sqrt{x}+\dfrac{25}{16}\right)-\dfrac{25}{16}-\dfrac{7}{2}\right]\)
\(=2\left[\left(\sqrt{x}+\dfrac{5}{4}\right)^2-\dfrac{81}{16}\right]=2\left(\sqrt{x}+\dfrac{5}{4}-\dfrac{9}{4}\right)\left(\sqrt{x}+\dfrac{5}{4}+\dfrac{9}{4}\right)=2\left(\sqrt{x}-1\right)\left(\sqrt{x}+\dfrac{7}{2}\right)\)
2) \(3x-7\sqrt{x}+4=3\left[\left(x-\dfrac{7}{3}\sqrt{x}+\dfrac{49}{36}\right)-\dfrac{49}{36}+\dfrac{4}{3}\right]\)
\(=3\left[\left(\sqrt{x}-\dfrac{7}{6}\right)^2-\dfrac{1}{36}\right]=3\left(\sqrt{x}-\dfrac{7}{6}-\dfrac{1}{6}\right)\left(\sqrt{x}-\dfrac{7}{6}+\dfrac{1}{6}\right)=3\left(\sqrt{x}-\dfrac{4}{3}\right)\left(\sqrt{x}-1\right)\)
3) \(4x-4\sqrt{x}-8=4\left[\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}-2\right]\)
\(=4\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]=4\left(\sqrt{x}-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(\sqrt{x}-\dfrac{1}{2}+\dfrac{3}{2}\right)=4\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
\(2x+5\sqrt{x}-7=\left(\sqrt{x}-1\right)\left(2\sqrt{x}+7\right)\) |
\(3x-7\sqrt{x}+4=\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)\) |
\(4x-4\sqrt{x}-8=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\) |
\(2x+5\sqrt{x}-7=\left(2\sqrt{x}+7\right)\left(\sqrt{x}-1\right)\)
\(3x-7\sqrt{x}+4=\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)\)
\(4x-4\sqrt{x}-8=4\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)