= 1 / e . ( t/p từ 1->e ( e.lnx / ( x + 1 ) ) dx
= 1 / e . ( tp từ 1->e ( ln(x+1) / ( x + 1 ) ) dx < e.lnx = ln ( x + 1 ) mà >
= 1 / e . ( tp từ 1->e ( ln(x+1) d ( ln ( x + 1 ) )
= 1 / e . ( 1 /2 . ln^2 (( x + 1 )) |1->e )
= ( ln^2 (( e + 1 )) - ln2 ) / 2e
\(I=\int_1^e\dfrac{\ln x}{x}dx=\int_1^e\ln x.d(\ln x)=\dfrac{(\ln x)^2}{2}|_1^e=...\)