Q=\(\dfrac{\left(3+2\sqrt{3}\right)\left(\sqrt{2}+1\right)+\sqrt{3}\left(2+\sqrt{2}\right)}{\sqrt{3}\left(\sqrt{2}+1\right)}-\left(\sqrt{2}+\sqrt{3}\right)\)
Q=\(\dfrac{3+4\sqrt{3}+3\sqrt{6}+3\sqrt{2}}{\sqrt{3}\left(\sqrt{2}+1\right)}\)-\(\left(\sqrt{2}+\sqrt{3}\right)\)
Q=\(\dfrac{3+4\sqrt{3}+3\sqrt{6}+3\sqrt{2}-2\sqrt{3}-3\sqrt{2}-\sqrt{6}-3}{\sqrt{3}\left(\sqrt{2}+1\right)}\)
Q=\(\dfrac{2\sqrt{3}-2\sqrt{6}}{\sqrt{3}\left(\sqrt{2}+1\right)}\)=\(\dfrac{\sqrt{4}-\sqrt{8}}{\sqrt{2}+1}\)