\(\left(x-\dfrac{1}{2}\right)^3=81=\left(\sqrt[3]{81}\right)^3\)
\(\Leftrightarrow x-\dfrac{1}{2}=\sqrt[3]{81}\)
\(\Leftrightarrow x=\sqrt[3]{81}+\dfrac{1}{2}\)
`#3107.101107`
`(x - 1/2)^2 = 81?`
`=> (x - 1/2)^2 = (+-9)^2`
`=>`\(\left[{}\begin{matrix}x-\dfrac{1}{2}=9\\x-\dfrac{1}{2}=-9\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=9+\dfrac{1}{2}\\x=-9+\dfrac{1}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=-\dfrac{17}{2}\end{matrix}\right.\)
Vậy, `x \in {-17/2; 19/2}.`