1) \(A=\left[x^4-\left(x-1\right)^2\right]:\left(x^2+x-1\right)-x^2+x=\left[\left(x^2-x+1\right)\left(x^2+x-1\right)\right]:\left(x^2+x-1\right)-x^2+x=x^2-x+1-x^2+x=1\)
2) \(B=\dfrac{\left(x+1\right)\left(x+2\right)+4\left(x-2\right)+2-7x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4}{x^2-4}=1\)
a: \(A=\dfrac{x^4+x^3-x^2-x^3-x^2+x+x^2+x-1}{x^2+x-1}-x^2+x\)
\(=x^2-x+1-x^2+x=1\)
b: \(B=\dfrac{x^2+3x+2+4x-8+2-7x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-8}{\left(x-2\right)\left(x+2\right)}\)