`2a^5b^4c(-4a^2c^9).(-ab^2)`
`=[-2.(-4)](a^5 .a^2 .a)(b^4 .b^2)(c.c^9)`
`=8a^8b^6c^[10]`
\(2a^5b^4c\left(-4a^2c^9\right)\left(-ab^2\right)\) \(=8a^8b^6c^{10}\)
`2a^5b^4c(-4a^2c^9).(-ab^2)`
`=[-2.(-4)](a^5 .a^2 .a)(b^4 .b^2)(c.c^9)`
`=8a^8b^6c^[10]`
\(2a^5b^4c\left(-4a^2c^9\right)\left(-ab^2\right)\) \(=8a^8b^6c^{10}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)
1.Cho các số a, b, c thỏa mãn điều kiện: \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^3}{\left(5b+4c\right)^2.\left(a+3c\right)}\)
Cho các số a, b, c thỏa mãn điều kiện :
\(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)}\)
Cho a,b,c là cac so thoa man dieu kien \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đo gia tri cua bieu thuc \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
Cho a;b;c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}\)= \(\frac{b-c+a}{2a-b}\)=\(\frac{2}{3}\)
Khi đó giá trị của biểu thức P=\(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
Cho a,b,c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=...\) Chỉ mình cách làm luôn nhé
Bài 1:Thu gọn các đơn thức sau và cho biết phần hệ số, phần biến và bậc của đơn thức
a) \(\left(-\frac{4}{5}ab^2c\right).\left(-20a^4bx\right)\)(a,b là hằng số )
b)\(-ax\left(xy^3\right)\frac{1}{4}\left(-by\right)^3\)(a,b là hằng số )