Đáp án A
Điều kiện: c os 2 x − π 3 ≠ 0 ⇔ 2 x − π 3 ≠ π 2 + k π ⇔ x ≠ 5 π 12 + k π 2
TXĐ: D = ℝ \ 5 π 12 + k π 2 , k ∈ ℤ .
Đáp án A
Điều kiện: c os 2 x − π 3 ≠ 0 ⇔ 2 x − π 3 ≠ π 2 + k π ⇔ x ≠ 5 π 12 + k π 2
TXĐ: D = ℝ \ 5 π 12 + k π 2 , k ∈ ℤ .
Cho hàm số f thỏa mãn f cot x = sin 2 x + cos 2 x , ∀ x ∈ 0 ; π . Giá trị lớn nhất của hàm số g x = f sin 2 x . f cos 2 x trên ℝ là
A. 6 125 .
B. 1 20 .
C. 19 500 .
D. 1 25 .
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
A. tan(α+β)=2cotα
B. tan(α+β)=2cotβ
C. tan(α+β)=2tanβ
D.tan(α+β)=2tanα
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là:
A. R\{1;2}
B. (1;2)
C. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
D. - ∞ ; 1 ∪ 2 ; + ∞
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là
A. R \ { 1 ; 2 }
B. ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
C. ( 1 ; 2 )
D. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
Tập xác định của hàm số y = 2 x − x 2 − π là
A. 0 ; 2
B. − ∞ ; 0 ∪ 2 ; + ∞
C. − ∞ ; 0 ∪ 2 ; + ∞
D. 0 ; 2
Tập xác định của hàm số y = ( 2 x - x 2 ) - π là
A. 0 ; 1 2
B. (0; 2)
C. [0; 2]
D. - ∞ ; 0 ∪ 2 ; + ∞
Hàm số y = ( x 2 - 4 x + 3 ) π có tập xác định là
A. D = R \ { 1 ; 3 }
B. D = ( - ∞ ; 1 ) ∪ ( 3 ; + ∞ )
C. D = R
D. D = ( 0 ; + ∞ )
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình f f sin x = m có nghiệm thuộc khoảng 0 ; π ?
A. 2
B. 3
C. 4
D. 5
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . sin x và các đường thẳng x = 0, x = π, trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 , S 2 sao cho 2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6