Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng 0 ; π khi và chỉ khi phương trình
f(t) = m có nghiệm thuộc nửa khoảng [-1;1]
Dựa vào đồ thị, suy ra
Chọn C.
Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng 0 ; π khi và chỉ khi phương trình
f(t) = m có nghiệm thuộc nửa khoảng [-1;1]
Dựa vào đồ thị, suy ra
Chọn C.
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )
Cho hàm số y=f(x) liên tục trên tập ℝ và có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình f 2 x - m - 1 f x + m - 2 = 0 có 12 nghiệm phân biệt?
A. Không tồn tại m
B. 1
C. 2
D. 3
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(f(sinx))=m có nghiệm thuộc khoảng 0 ; π là
A. [-1;3)
B. (-1;1)
C. (-1;3]
D. [-1;1)
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sinx)=m có nghiệm thuộc khoảng 0 ; π là
A. (-1;3)
B. (-1;1)
C. (-1;3)
D. (-1;1)
Cho hàm số f(x) liên tục trên và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình có nghiệm thuộc khoảng ( 0 ; π ) là
A. [-4;-2]
B. [-4;0]\{2}
C. [-4;-2)
D. (-4;-2]
Cho hàm số y=f(x) có đạo hàm xác định trên tập ℝ / 0 và đồ thị hàm số y=f(x) như hình vẽ bên dưới. Có bao nhiêu giá trị nguyên của tham số m để phương trình f cos 2 x = m có nghiệm?
A. Không tồn tại m
B. 1
C. 2
D. 3
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình. Tập hợp tất cả các giá trị thực tham số m để phương trình f(cosx) = m có 3 nghiệm phân biệt thuộc khoảng ( 0 ; 3 π 2 ] là
A. [-2;2]
B. (0;2)
C. (-2;2)
D. (0;2]
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình f 2 cos x + m - 2018 f cos x + m - 2019 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn 0 ; 2 π là
A. 1
B. 2
C. 3
D. 5
Cho hàm số y = f x liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình f f sin x = m có nghiệm thuộc khoảng 0 ; π ?
A. 2
B. 3
C. 4
D. 5