Đáp án B
Phương trình:
⇔ 2 x + 1 = 9 ⇔ 2 x = 8 ⇔ x = 4 ⇒ S = 4
Đáp án B
Phương trình:
⇔ 2 x + 1 = 9 ⇔ 2 x = 8 ⇔ x = 4 ⇒ S = 4
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Gọi S là tập nghiệm của phương trình 2 l o g 2 ( 2 x - 2 ) + l o g 2 ( x - 3 ) 2 = 2 . Tổng các phần tử của S bằng:
A. 6
B. 4 + 2
C. 2 + 2
D. 8 + 2
Gọi S là tập nghiệm của phương trình 2 log 2 ( 2 x - 2 ) + log 2 ( x - 3 ) 2 = 2 trên ℝ . Tổng các phần tử của S là
A. 8 + 2
B. 4 + 2
C. 6 + 2
D. 8
Tập nghiệm của bất phương trình log 2 x - log x 3 + 2 ≥ 0 là S = ( a ; b ] ∪ [ c ; + ∞ ) thì a + b + c là:
A. 10
B. 100
C. 110
D. 2018
Bất phương trình 2 log 9 x + 2 − log 3 1 − x ≥ 1 có tập nghiệm là S = [ a ; b ) . Tính P = 4 a + 1 2 + b 3 .
A. P = − 1.
B. P = 5.
C. P = 4.
D. P = 1.
Gọi S là tập nghiệm của phương trình ln ( 3 e x - 2 ) = 2 x .Số tập con của S bằng
A. 0
B. 4
C. 1
D. 2
Tập nghiệm S của bất phương trình 5 x + 2 < 1 25 − x là
A. S = − ∞ ; 2
B. S = − ∞ ; 1
C. S = 1 ; + ∞
D. S = 2 ; + ∞
Tập nghiệm S của bất phương trình 5 x + 2 < 1 25 − x là
A. S = 2 ; + ∞
B. S = 1 ; + ∞
C. S = − ∞ ; 1
D. S = − ∞ ; 2
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.