Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Tập nghiệm của bất phương trình 1 3 x + 2 > 3 − x là
A. (1;2)
B. 2 , + ∞ .
C. 2 , + ∞ .
D. 1 , 2 .
Tập nghiệm của bất phương trình 1 3 x + 2 > 3 − x là
A. 0 ; 2 .
B. 2 ; + ∞ .
C. − 2 ; − 1 .
D. 0 ; + ∞ .
A. [ 2 ; + ∞ )
B. (1;2)
C. (1;2]
D. [ 2 ; + ∞ )
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tập nghiệm của phương trình log x 2 - 2 x + 2 = 1 là
A. ∅
B. - 2 ; 4
C. 4
D. - 2
Tập nghiệm của bất phương trình 1 3 x + 2 > 3 - x
A. 2 ; + ∞
B. 1 ; 2
C. ( 1 ; 2 ]
D. [ 2 ; + ∞ )
Tập nghiệm của bất phương trình log 3 x + 3 < 2 là
A. - ∞ ; 6
B. ( - 3 ; 6 )
C. - ∞ ; - 9
D. (-3;9)
Tập nghiệm của bất phương trình log 3 x 2 + 2 ≤ 3 là
A. S = ( - ∞ ; 5 ] ∪ [ 5 ; + ∞ )
B. S = ∅
C. S= ℝ
D. S=[-5;5]