Ta có ^A > ^B > ^C
=> BC > AC > AB
=> OF < OJ < OK
góc A>góc B>góc C
nên BC>AC>AB
=>OF<OJ<OK
Ta có ^A > ^B > ^C
=> BC > AC > AB
=> OF < OJ < OK
góc A>góc B>góc C
nên BC>AC>AB
=>OF<OJ<OK
cho tm giác ABC nội tiếp đường tòn tâm O, có góc A>B>C. gọi OH,OI,OK là khoảng cách từ tâm đến BC, AC,AB. so sánh OH,OI,OK;
Cho tam giác ABC nội tiếp đường tròn (O) có góc A>góc B >gócC .Gọi OH,OI,OK theo thứ tự là khoảng cách từ O đến BC,AC,AB.So sánh độ dài OH,OI,OK
Tam giác ABC nội tiếp đường tròn (O) có ∠ A > ∠ B > ∠ C. Gọi OH, OI, OK theo thứ tự là khoảng cách từ O đến BC, AC, AB. So sánh các độ dài OH, OI, OK.
Cho tam giác ABC có AB > AC .Trên cạnh AB lấy điểm D sao cho AD = AC đường tròn tâm O ngoại tiếp tam giác BCD .Từ O lần lượt hạ các đường vuông góc OH,OK xuống BC và BD (H ∈ BC , K ∈ BD). So sánh hai cung nhỏ BD và BC
Cho tam giác ABC . Trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD (H ∈ BC, K ∈ BD)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Cho tam giác ABC cân tại A nội tiếp trong đường tròn (O;R) có AB = R.
a, CMR: AO là tia phân giác của góc BAC
b, C/tỏ BC > R. So sánh khoảng cách từ tâm O đến các cạnh của tam giác ABC.
c, Tính theo R độ dài cạnh BC và chiều cao AH hạ từ A đến BC
Cho tam giác ABC có AB > AC .Trên cạnh AB lấy điểm D sao cho AD = AC đường tròn tâm O ngoại tiếp tam giác BCD .Từ O lần lượt hạ các đường vuông góc OH,OK xuống BC và BD (H ∈ BC , K ∈ BD). Chứng minh rằng OH < OK
Cho tam giác ABC . Trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD (H ∈ BC, K ∈ BD)
So sánh hai cung nhỏ BD và BC
Cho tam giác abc, đường tròn nội tiếp tâm o. Góc a bằng 45 độ. Góc b bằng 60 độ. Tính khoảng cách từ o đến ab, bc, ca