\(\sqrt{17+12\sqrt{2}}=\sqrt{3+12\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3+2\sqrt{2}\right)^2}=3+2\sqrt{2}\)
\(\sqrt{17+12\sqrt{2}}=\sqrt{17+2\sqrt{72}}=\sqrt{9+2\sqrt{8}.\sqrt{9}+8}=\sqrt{\left(3+\sqrt{8}\right)^2}=3+\sqrt{8}\)
\(\sqrt{17+12\sqrt{2}}=\sqrt{3+12\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3+2\sqrt{2}\right)^2}=3+2\sqrt{2}\)
\(\sqrt{17+12\sqrt{2}}=\sqrt{17+2\sqrt{72}}=\sqrt{9+2\sqrt{8}.\sqrt{9}+8}=\sqrt{\left(3+\sqrt{8}\right)^2}=3+\sqrt{8}\)
rút gọn
\(\sqrt{17+12\sqrt{2}}-\sqrt{17-12\sqrt{2}}\)
\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
Tính \(\frac{\sqrt{3}-2\sqrt{2}}{\sqrt{17}-12\sqrt{2}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(\sqrt{\left(\sqrt{7}-5\right)^2}+\sqrt{\left(2-\sqrt{7}\right)^2}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17}-12\sqrt{2}}\)
Tính
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
cần gấp
Tính giá trị của biểu thức:
a)A=\(\sqrt{\left(2-\sqrt{5}\right)^2}\) +\(\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
b)B=\(\sqrt{6+2\sqrt{5}}\) - \(\sqrt{6-2\sqrt{5}}\)
c)C=\(\sqrt{17+12\sqrt{2}}\) + \(\sqrt{17-12\sqrt{2}}\)