ĐKXĐ: \(x\ge5\)
Ta có: \(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Đặt \(\sqrt{x-5}=a\left(a\ge0\right)\)
\(\sqrt{x+5}=b\left(b\ge0\right)\)
Pt trở thành: \(ab-6=3b-2a\)
\(\Leftrightarrow3b-2a-ab+6=0\)
\(\Leftrightarrow\left(b+2\right)\left(3-a\right)=0\)
Vì \(b\ge0\Rightarrow b+2>0\)
\(3-a=0\)
\(\Leftrightarrow3=\sqrt{x-5}\Leftrightarrow x-5=9\Leftrightarrow x=14\) (Tm ĐKXĐ)
Vậy...