Đkxđ: \(x\ge1\). Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\) và \(\sqrt[3]{2-x}=b\left(b\le1\right)\)
Ta có \(\left\{{}\begin{matrix}a-b=5\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+5\right)^2+b^3=1\end{matrix}\right.\)
\(\Rightarrow b^3+b^2+10b+24=0\)
\(\Leftrightarrow\left(b+2\right)\left(b^2-b+12\right)=0\)
\(\Leftrightarrow b=-2\) (do \(b^2-b+12>0\))
\(\Leftrightarrow\sqrt[3]{2-x}=-2\) \(\Leftrightarrow x=10\) (thỏa mãn)
Vậy pt đã cho có nghiệm duy nhất là \(x=10\)