PT <=> \(\left(\sqrt{2x+3}\right)^2=\left(1+\sqrt{2}\right)^2\)
<=> \(2x+3=3+2\sqrt{2}\)
<=> \(2x-2\sqrt{2}=0\)
<=> \(2\left(x-\sqrt{2}\right)=0\)
<=> \(x=\sqrt{2}\)
KL: \(x\in\left\{\sqrt{2}\right\}\)
Điều kiện: x\(\ge-\frac{3}{2}\)
Có: \(\sqrt{2x+3}=1+\sqrt{2}\)
\(\Leftrightarrow\:2x+3=1+2\sqrt{2}+4\)
\(\Leftrightarrow x=1+\sqrt{2}\left(TM\right)\)
Vậy...