a, căn (2x-3)=5 => 2x-3=25
=> 2x=28
=> x=14
Vậy x=14.
b, ĐK: x>1/2.
căn (1/2x-1)>2 => 1/(2x-1)>4
=> 1> 4.(2x-1) => 1>8x-4
=> 8x<5 => x<5/8
Vậy 1/2<x<5/8.
a, căn (2x-3)=5 => 2x-3=25
=> 2x=28
=> x=14
Vậy x=14.
b, ĐK: x>1/2.
căn (1/2x-1)>2 => 1/(2x-1)>4
=> 1> 4.(2x-1) => 1>8x-4
=> 8x<5 => x<5/8
Vậy 1/2<x<5/8.
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
Tim x de cac bieu thuc sau co nghia :
1)\(\sqrt{\frac{5-2x}{x^2}}\)
2)\(\sqrt{4-x^2}\)
3)\(\sqrt{x^2-1}\)
4)\(\frac{1-x}{\sqrt{4x-3}}\)
5)\(\frac{\sqrt{1-2x}}{x^2-1}\)
6)\(\frac{3}{\sqrt{1-3x}}\)
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Chứng minh rằng: P=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là 1 số nguyên
\(\sqrt{2x-3}\)= -5
\(\sqrt{\frac{1}{2x-1}}\) > 2
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Gải phương trình
a, \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=\)4
b, \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)= \(2\sqrt{2}\)
giải các phương trình sau:
a, \(\sqrt{x^2-1}=x-2\)
b, \(\frac{5}{\sqrt{2x^2+1}}=1\)
c, \(\sqrt{x^2}+\sqrt{x^2-2x+1}=2\)
d, \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
Tính giá trị của biểu thức : M=\(\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\) với x = \(\frac{\sqrt{3}}{4}\)
Giải pt
\(\sqrt{2x+\frac{2013-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)