\(\sqrt{27+10\sqrt{2}}-3\sqrt{2}=\sqrt{\left(5+\sqrt{2}\right)^2}-3\sqrt{2}=5+\sqrt{2}-3\sqrt{2}=5-2\sqrt{2}\)
\(\sqrt{27+10\sqrt{2}}-3\sqrt{2}=\sqrt{\left(5+\sqrt{2}\right)^2}-3\sqrt{2}=5+\sqrt{2}-3\sqrt{2}=5-2\sqrt{2}\)
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
Cho \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a, Rút gọn P
b, Tính P khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
Rút gọn : ( giúp với )
a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
rút gọn biểu thức
E=2\(\sqrt{3}\)+3\(\sqrt{27}\)-\(\sqrt{300}\)
F=3\(\sqrt{2}\)+4\(\sqrt{18}\)
G=2\(\sqrt{3}\)-4\(\sqrt{27}\)+5\(\sqrt{48}\)
H=(3\(\sqrt{50}\)-5\(\sqrt{18}\)+3\(\sqrt{8}\))\(\sqrt{2}\)
rút gọn biểu thức
A=2\(\sqrt{27}\)+5\(\sqrt{12}\)-3\(\sqrt{48}\)
B=\(\sqrt{147}\)+\(\sqrt{75}\)-4\(\sqrt{27}\)
C=3\(\sqrt{2}\)(4-\(\sqrt{2}\))+3(1-2\(\sqrt{2}\))2
D=2\(\sqrt{5}\)-\(\sqrt{125}\)-\(\sqrt{80}\)+\(\sqrt{605}\)
Rút gọn: \(2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}\)
A=\(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{5}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)
rút gọn 0 dùng máy tính
Rút gọn: (Giải chi tiết từng bước)
9) \(2\sqrt{8\sqrt{3}-2\sqrt{5\sqrt{3}}}-3\sqrt{20\sqrt{3}}\)
10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\) với x \(\ge\) 0
11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\) với \(x\ge0\)
12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\) với \(a\ge0\)
Cần gấp ạ
Rút gọn biểu thức sau (không dùng máy tính) \(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{5}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)