\(\sqrt{1\dfrac{9}{16}\cdot5\dfrac{4}{5}\cdot0,01}\)
\(=\sqrt{\dfrac{25}{16}\cdot\dfrac{29}{5}\cdot\dfrac{1}{100}}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{10}\cdot\sqrt{\dfrac{29}{5}}=\dfrac{1}{8}\cdot\dfrac{\sqrt{145}}{5}=\dfrac{\sqrt{145}}{40}\)
\(\sqrt{1\dfrac{9}{16}\cdot5\dfrac{4}{5}\cdot0,01}\)
\(=\sqrt{\dfrac{25}{16}\cdot\dfrac{29}{5}\cdot\dfrac{1}{100}}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{10}\cdot\sqrt{\dfrac{29}{5}}=\dfrac{1}{8}\cdot\dfrac{\sqrt{145}}{5}=\dfrac{\sqrt{145}}{40}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Rút gọn biểu thức sau
A=\(\dfrac{1}{x-1}\sqrt{75\left(x-1\right)^3}\left(x>1\right)
\)
B=\(5\sqrt{4x}-3\sqrt{\dfrac{100x}{9}}-\dfrac{4}{x}\sqrt{\dfrac{x^3}{4}}\left(x>0\right)
\)
C=\(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
Help me
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
Cho Q= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\) + \(\dfrac{9\sqrt{x}-4}{x-16}\) - \(\dfrac{4\sqrt{x}-4x}{\sqrt{x}-4}\)
Chứng minh Q= \(\dfrac{x-3\sqrt{x}}{\sqrt{x}-4}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a : \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
b : \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)với x ≥ 0 x ≠ 10
c : \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với x ≥ 0 x ≠ 9
d : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{1\dfrac{9}{16}}\)
2,\(\dfrac{\sqrt{12,5}}{0,5}\)
3,\(\sqrt{\dfrac{25}{64}}\)
4,\(\dfrac{\sqrt{230}}{\sqrt{2,3}}\)
5,\((\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}).\sqrt{6}\)
Tìm x, biết :a) \(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
b) \(\sqrt{5x-2}=9\)
c) \(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
1) thực hiện phép tính
a) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
b) \(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
c) \(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}\)
giúp mk vs ạ mk đang cần gấp