a: \(2^2=4\)
\(\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
mà \(1< 2\sqrt{2}\)
nên \(2< 1+\sqrt{2}\)
b: \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\)
\(1=1\)
mà \(3-2\sqrt{3}< 0\)
nên \(\sqrt{3}-1< 1\)
c: \(3\sqrt{11}=\sqrt{99}< \sqrt{144}=12\)
`a, 1 + sqrt 2 > 1 + sqrt 1 = 2`.
`b, sqrt 3 - 1 < sqrt 4 - 1 = 1`
`c, 3 sqrt 11 < 3 sqrt 16 = 12`
`d, -2 sqrt 31 < -2 sqrt 25 = -10`