Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Khánh Linh

So sánh: A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) với B = 332 - 1

ngonhuminh
19 tháng 10 2017 lúc 17:55

\(A=\left(3+1\right)\left(3^2+1\right)....\left(3^{16}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)....\left(3^{16}+1\right)\)\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{16}+1\right)\)\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^{32}-1\right)=B\Rightarrow B>A\)

Trang
19 tháng 10 2017 lúc 18:35

Theo bài ra ta có:

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\\ \Rightarrow2A=3^{32}-1\\ \Rightarrow A=\dfrac{3^{32}-1}{2}\) ta thấy : \(\dfrac{3^{32}-1}{2}< 3^{32}-1\\ \)

=> A < B

vậy A < B

Trần Quốc Lộc
20 tháng 10 2017 lúc 17:12

\(\text{Ta có : }A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ A=\dfrac{2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\\ A=\dfrac{3^{32}-1}{2}\\ Do\text{ }\dfrac{3^{32}-1}{2}< 3^{32}-1\\ nên\text{ }\Rightarrow A< B\)

Vậy \(A< B\)


Các câu hỏi tương tự
ngọc hân
Xem chi tiết
nguyễn rhij
Xem chi tiết
Khánh Huyền
Xem chi tiết
Thuong Nguyen
Xem chi tiết
Nguyễn Thành Minh
Xem chi tiết
Thuong Nguyen
Xem chi tiết
Linh Vũ
Xem chi tiết
Kim Hue Truong
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết