\(\left(\dfrac{1}{2}\right)^{24}=\left[\left(\dfrac{1}{2}\right)^2\right]^{12}=\left(\dfrac{1}{4}\right)^{12}\\ \left(\dfrac{1}{3}\right)^{36}=\left[\left(\dfrac{1}{3}\right)^3\right]^{12}=\left(\dfrac{1}{27}\right)^{12}\\ Vì:\dfrac{1}{4}>\dfrac{1}{27}\Rightarrow\left(\dfrac{1}{4}\right)^{12}>\left(\dfrac{1}{27}\right)^{12}\Rightarrow\left(\dfrac{1}{2}\right)^{24}>\left(\dfrac{1}{3}\right)^{36}\)
Dễ thấy \(2^{24}< 3^{36}\Rightarrow\dfrac{1}{2^{24}}>\dfrac{1}{3^{36}}\)
(1/2)^24=[(1/2)^2]^12=(1/4)^12
(1/3)^36=[(1/3)^3]^12=(1/27)^12
mà 1/4>1/27
nên (1/2)^24>(1/3)^36