Số phức z = a + b i a , b ∈ ℝ có z = 2 2 và z 2 có phần ảo bằng 8, điểm biểu diễn số phức z nằm trong góc phần tư thứ ba của hệ trục toạ độ. Giá trị của biểu thức P = a + b bằng
A. P = 4
B. P = 0
C. P = - 4
D. P = 2
Xét các số phức z = a + b i a , b ∈ ℝ có modun bằng 2 và có phần ảo dương. Tính giá trị của biểu thức S = 5 a + b + 2 2018 khi biểu thức P = 2 + z + 3 2 - z đạt giá trị lớn nhất
A. S = 1
B. S = 2 2018
C. S = 2 1009
D. S = 0
Cho số phức z = a+bi a , b ∈ R thoả mãn z - 2 i z - 2 là số thuần ảo. Khi số phức z có môđun lớn nhất. Tính giá trị biểu thức P=a+b
A. P = 0
B. P = 4
C. P = 2 2 + 1
D. P = 1 + 3 2
Biết rằng hai số phức z 1 , z 2 thỏa mãn z 1 - 3 - 4 i = 1 và z 2 - 3 - 4 i = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của biểu thức P = z - z 1 + z - z 2 + 2 bằng
A. P m i n = 3 1105 11
B. P m i n = 5 - 2 3
C. P m i n = 3 1105 13
D. P m i n = 5 + 2 5
Xét số phức z có phần thực dương và ba điểm A,B,C lần lượt là điểm biểu diễn của các số phức z , 1 z và z + 1 z Biết tứ giác OABC là một hình bình hành, giá trị nhỏ nhất của bằng z + 1 z 2
A. 2
B. 2
C. 2 2
D. 4
Cho số phức z = 1 + i 5 . Điểm biểu diễn số phức z nằm trong góc phần tư nào của hệ tọa độ vuông góc của mặt phẳng phức?
A. Góc phân tư thứ IV
B. Góc phân tư thứ I
C. Góc phân tư thứ II
D. Góc phân tư thứ III
Cho số phức z = 1 + i 5 . Điểm biểu diễn số phức z nằm trong góc phần tư nào của hệ tọa độ vuông góc của mặt phẳng phức?
A. Góc phần tư thứ I
B. Góc phần tư thứ II
C. Góc phần tư thứ III
D. Góc phần tư thứ IV
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn |z-1-2i|= 3 . Khi biểu thức P = | z + 3 | 2 - | z - 2 i | 2 đạt giá trị lớn nhất. Giá trị của [ a b ] bằng
A. 14.
B. 13.
C. 7.
D. 8.
Cho số phức z=a+bi ( a , b ∈ R ) thoả mãn z 2 có phần ảo bằng 5 và số phức w = 2 z - i 2 + i z có môđun bằng 2. Tính P=a+b.
A. 13 4
B. 21 4
C. 9 4
D. 11 4