Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z - 2 i z - 2 là số thuần ảo. Khi số phức z có môđun lớn nhất. Tính giá trị biểu thức P = a + b
A. P = 0 .
B. P = 4 .
C. P = 2 2 + 1 .
D. P = 1 + 3 2 .
Cho số phức z=a+bi ( a , b ∈ R ) thoả mãn |z-3-3i|=6. Khi P=2|z+6-3i|+3|z+1+5i| đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. 2 - 2 5
B. 4 - 2 5
C. 2 5 - 2
D. 2 5 - 4
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn |z-1-2i|= 3 . Khi biểu thức P = | z + 3 | 2 - | z - 2 i | 2 đạt giá trị lớn nhất. Giá trị của [ a b ] bằng
A. 14.
B. 13.
C. 7.
D. 8.
Cho số phức z=a+bi ( a , b ∈ R ) thoả mãn z 2 có phần ảo bằng 5 và số phức w = 2 z - i 2 + i z có môđun bằng 2. Tính P=a+b.
A. 13 4
B. 21 4
C. 9 4
D. 11 4
Xét số phức z = a + b i a , b ∈ R thỏa mãn điều kiện z - 4 - 3 i = 5 . Tính P=a+b khi biểu thức |z+1-3i|+|z-1+i| đạt giá trị lớn nhất.
A. P=10
B. P=4
C. P=6
D. P=8
Cho số phức z=a+bi (a,b∈R) thỏa mãn | z 2 + 4 |=2|z+2i|. Khi biểu thức P=|iz+4-3i| đạt giá trị lớn nhất thì a-b bằng
A. - 13 - 13 13
B. 26 - 2 13 13
C. - 26 - 2 13 13
D. 2.
Xét các số phức z=a+bi z = a + b i ( a , b ∈ R ) thỏa mãn z - 3 + 3 i = 2 . Tính P=a+b khi z - 1 + 3 i + z - 3 + 5 i đạt giá trị lớn nhất
A. 2
B. – 2
C. 8
D. – 8
Xét tập (A) gồm các số phức z thoả mãn z - 2 i z - 2 là số thuần ảo và các giá trị thực m,n sao cho chỉ có duy nhất một số phức z ∈ ( A ) thoả mãn |z-m-ni|= 2 . Đặt M=max( m+n) và N=min( m+n). Tính P=M+N.
A. P = -2
B. P = -4
C. P = 4
D. P = 2
Xét các số phức z = a + bi, (a,b i) thỏa mãn |z – 3 – 3i| = 6. Tính P = 3a + b khi biểu thức 2|z + 6 – 3i| + |z + 1 + 5i| đạt giá trị nhỏ nhất.
A. P = 20
B. P = 2 + 20
C. P = - 20
D. P = - 2 - 20