\(\left\{{}\begin{matrix}k\in Z\\\left|k\right|\le2\end{matrix}\right.\) \(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow k^2+1=\left\{1;2;5\right\}\)
\(\Rightarrow A\) có 3 phần tử
\(\left\{{}\begin{matrix}k\in Z\\\left|k\right|\le2\end{matrix}\right.\) \(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow k^2+1=\left\{1;2;5\right\}\)
\(\Rightarrow A\) có 3 phần tử
Cho tập hợp A = \(\left\{x\in Q:\left(2x^2-x\right)\left(x^3-2x+1\right)=0\right\}\)
Hãy liệt kê tất cả các phần tử của tập hợp A, chỉ ra các tập hợp con gồm 2 phần tử của A
Cho tập hợp \(A=\left\{x\in Z\text{ | }\frac{x^2+2}{x}\in Z\right\}\)
a,Hãy xác định tập A bằng cách liệt kê các phần tử
b,Hãy tìm tất cả các tập con của tập hợp A mà số phần tử của nó nhỏ hơn 3
Cho tập hợp: A=\(\left\{x\in R:-\dfrac{7}{4}< x\le-\dfrac{1}{2}\right\}\), B=\(\left\{x\in R:4< \left|x\right|< \dfrac{9}{2}\right\}\),C=\(\left\{x\in R:-\dfrac{5}{2}x+3< 3x-\dfrac{2}{3}\right\}\)
a. Dùng kí hiệu đoạn, khoảng, nửa khoảng để viết lại các tập hợp trên.
b. Xác định \(\left(A\cap B\right)\)\(\cap C\), \(\left(CrA\right)\)trừ B, \(\left(A\cup C\right)\)\(\cap\)(B trừ A)
1/cho tập hợp B= \(\left\{x\in R|\left(9-x^2\right)\left(x^2-3x+2\right)=0\right\}\)tìm các phần tử
2/ tập hợp A= \(\left\{1;2;3;4;5;6\right\}\) có bao nhiêu tập hợp con gồm 2 phần tử ?
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
chứng minh
\(\left(a+b\right)^n=\sum\limits^n_{k=0}\cdot C^k_n\cdot a^{n-k}\cdot b^k\left(\forall2\le n;n\in Z\right)\)
gợi ý
dùng \(C^k_n+c^{k+1}_n=c^{k+1}_{n+1}\)
Cho tập hợp \(A=\left\{x\in R|\left|x\right| < 3\right\}\), \(B=\left\{0,1,3\right\}\), \(C=\left\{x\in R|\left(x^2-4x+3\right)\left(x^2-4\right)=0\right\}\). Khẳng định nào sau đây đúng
A. \(\left(A\B\right)\cup C=\left\{-2;-1;2;3\right\}\)
B.\(C_nB=\phi\)
C. \(\left(B\cap C\right)\A=\left\{1\right\}\)
D. \(C_{A\cup B}C=\left\{-1;0\right\}\)
(Kèm lời giải)
1. Tồn tại hay không 5 số nguyên \(a;b;c;d;e\) thỏa mãn đẳng thức
\(a^2+b^2=\left(a+1\right)^2+c^2=\left(a+2\right)^2+d^2=\left(a+3\right)^2+e^2\)
2. Cho các số nguyên dương \(a;b;c;d\) thỏa mãn \(\left\{{}\begin{matrix}a^2+1=bc\\c^2+1=ad\end{matrix}\right..\)
Chứng minh \(b+c=3a\)
3. Cho tập hợp \(A=\left\{1;2;3;...;2017\right\}.\) Có bao nhiêu tập hợp con của A sao cho tổng bình phương các phần tử của tập hợp con đó là số lẻ?
Số phần tử của tập hợp
\(A=\left\{x\in R|\left(2x^2+x-4\right)^2=4x^2-4x-1\right\}\) là bao nhiêu