Lời giải:
$S=1-5+5^2-5^3+...+5^{98}-5^{99}$
$5S=5-5^2+5^3-5^4+....+5^{99}-5^{100}$
$5S+S=(1-5+5^2-5^3+...+5^{98}-5^{99})+(5-5^2+5^3-5^4+....+5^{99}-5^{100})$
$6S=-5^{100}+1$
$S=\frac{1-5^{100}}{6}$
b.
$1-5^{100}=6S$
$5^{100}=1-6S\Rightarrow 5^{100}$ chia $6$ dư $1$.