\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)
\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)
rút gọn các biểu thức sau:
a) \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\) với x lớn hơn hoặc = 0
b) \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) với a lớn hơn hoặc = 0
thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
b) \(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{\left(3+\sqrt{2}\right)^2}\)-\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}\)-\(\sqrt{\left(\sqrt{7}+2\sqrt{2}\right)^2}\)
c)\(\sqrt{\left(3+\sqrt{5}\right)^2}\)+\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
d) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)-\(\sqrt{\left(2+\sqrt{3}\right)^2}\)
Cho 2 biểu thức M = \(3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
N = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a≠1
a, Rút gọn biểu thức M
b, Tìm các giá trị của a để giá trị của biểu thức M bằng 2 lần giá trị của biểu thức N
Rút gọn các biểu thức sau:
A= \(3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
B= \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
C= \(3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
D= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
E= \(\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)
Rút gọn biểu thức \(B=\left(\frac{\sqrt{a-2}+2}{3}\right)\left(\frac{\sqrt{a-2}}{3+\sqrt{a-2}}+\frac{a+7}{11-a}\right):\left(\frac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\frac{1}{\sqrt{a-2}}\right)\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
Câu 1
1) Tính
a) \(\sqrt{25}+\sqrt{49}\) b) \(\sqrt{121}-\sqrt{81}\)
2) Với x > -2 thì \(\sqrt{2x+1}\) có nghĩa không
3) Rút gọn biểu thức sau :
a) \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\) c) \(\dfrac{\sqrt{27}-\sqrt{108}+\sqrt{12}}{\sqrt{3}}\)