a/ \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2=2\left(sin^2\alpha+cos^2\alpha\right)=2\)
b/ \(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cotg^2\alpha\right)\left(1-cos^2\alpha\right)\)
\(=\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)\left(1-sin^2\alpha\right)-\left(1+\frac{cos^2\alpha}{sin^2\alpha}\right)\left(1-cos^2\alpha\right)\)
\(=\frac{1}{cos^2\alpha}.cos^2\alpha-\frac{1}{sin^2\alpha}.sin^2\alpha=1-1=0\)