Ta sử dụng ẩn phụ:
\(\hept{\begin{cases}a=x+y-z\\b=y+z-x\\c=x+z-y\end{cases}}\)=> x+y+z=a+b+c
Khi đó :
A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3=(a+b+c)^3+a^3+b^3+c^3=3(a+b)(b+c)(c+a)=3*2y*2z*2x=24xyz
Ta sử dụng ẩn phụ:
\(\hept{\begin{cases}a=x+y-z\\b=y+z-x\\c=x+z-y\end{cases}}\)=> x+y+z=a+b+c
Khi đó :
A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3=(a+b+c)^3+a^3+b^3+c^3=3(a+b)(b+c)(c+a)=3*2y*2z*2x=24xyz
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/ x^2+y^2+z^2-xy-yz-zx
Rút gọn: \(\frac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\frac{x\left(y^2+z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(x\ne y\ne z\ne0\)
Cho 3 số thực x;y;z thoả :
\(\hept{\begin{cases}3\left(x+y\right)+2\left(z+1\right)=0\\3xy+1=0\end{cases}}\)
Rút gọn biểu thức sau :
\(A=\frac{x^3-y^3+\left(z+1\right)\left(x^2-y^2\right)-x+y}{\left(x-y\right)^3}\)
Làm giúp mình nha....Cảm ơn m bạn nhìu ^^
Cho 3 số dương x,y,z thỏa mãn x+y+x>=6. Tìm gtnn của biểu thức P=\(\dfrac{x^3+y^3}{x^2+y^2}\)+\(\dfrac{y^3+z^3}{y^2+z^2}\)+\(\dfrac{z^3+x^3}{z^2+x^2}\)
` Y = ( 3x^2 - 3x - 3 )/(x^2+x-2) - (x+1)/(x+2) + (x-2)/(x).( (1)/(1-x) - 1)`
a) Rút gọn Y ( Đáp số Y = ` (x-2)/(x+2) ` )
b) Tìm x để Y = 2
c) Tìm x ∈ Z để Y ∈ Z
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho x , y , z > 0 , x + y + z = 3 . Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
Cho x, y, z là 3 số dương thỏa mãn x+y+z =9. Tìm giá tri nhỏ nhất của biểu thức
P=\(\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+zx+z^2}+\frac{x^3}{z^2+zx+x^2}\)
Cho x,y,z là những số dương thỏa mãn xyz=1. Tìm giá trị nhỉ nhất của biểu thức
\(A=\frac{x^9+y^9}{x^6+x^3y^3+y^6}+\frac{y^9+z^9}{y^6+y^3z^3+z^6}+\frac{z^9+x^9}{z^6+z^3x^3+x^3}\)