Ta có:
\((x^2-5x+1)^2+2(5x-1)(x^2-5x+1)+(5x-1)^2\)
\(=[(x^2-5x+1)+(5x-1)]^2\) (theo hằng đẳng thức)
\(=(x^2)^2=x^4\)
Ta có:
\((x^2-5x+1)^2+2(5x-1)(x^2-5x+1)+(5x-1)^2\)
\(=[(x^2-5x+1)+(5x-1)]^2\) (theo hằng đẳng thức)
\(=(x^2)^2=x^4\)
Rút gọn các biểu thức :
a) \(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b) \(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Rút gọn biểu thức :
a) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b) P=\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
c) Q=\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
d) P = \(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
Rút gọn các biểu thức:
a, P=\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b, Q=\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Rút gọn :
A=\(\left(x-6\right)^2+\left(x+6\right)^2\)
B=\(\left(x+y+3\right)^2-\left(x^2+y^2+9\right)\)
C=\(\left(5x-2\right)\cdot\left(5x+2\right)-\left(5x-1\right)^2\)
D=\(\left(100^2+98^2+96^2+...+2^2\right)-\left(99^2+97^2+95^2+...+1^2\right)\)
Tìm x:
a/ \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
b/ \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
c/ \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
Tìm x
1) \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
2) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
3) \(\left(2x-5\right)\left(2x+5\right)-1=0\)
4) \(5x^2-20=0\)
Giusp mk vs
* Tìm x :
a, \(\left(3x-2\right)^2-\left(3x-5\right).\left(3x+2\right)=11\)
b, \(\left(4x-3\right)^2-\left(4x-5\right).\left(4x+5\right)=32\)
c, \(\left(5x-2\right)^2-\left(5x+3\right).\left(5x-5\right)=1\)
d, \(\left(x-4\right)^2-\left(x-7\right).\left(2x-3\right)=5-x^2\)
Chứng minh các biểu thức sau không phụ thuộc x :
a,\(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
b,\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
Bài 1 :Tìm x,y ,biết :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
Bài 2 : Chứng minh rằng các biểu thức sau không phụ thuộc vào các biến x,y:
D = \(\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)