Ta có: \(\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
\(=\left(3x\right)^3+\left(2y\right)^3-\left[\left(3x\right)^3-\left(2y\right)^3\right]\)
\(=27x^3+8y^3-27x^3+8y^3=16y^3\)
Ta có: \(\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
\(=\left(3x\right)^3+\left(2y\right)^3-\left[\left(3x\right)^3-\left(2y\right)^3\right]\)
\(=27x^3+8y^3-27x^3+8y^3=16y^3\)
Cho B=(x-3y)(x+3y) + (4y-1)^2 - 2(x+3y) Tìm giá trị nhỏ nhất của B
Cho 2x^2+y^2 -2xy-6x+9=0 . Tính giá trị của C=3𝑥−1/2𝑦
Cho 𝑥 + 𝑦 = 3. Tính giá trị của biểu thức: 𝐴 = 𝑥^2 + 2𝑥𝑦 + 𝑦^2 − 5𝑥 − 5𝑦 + 1 Cho 𝑥 − 𝑦 = 6. Tính giá trị của biểu thức: 𝐵 = 𝑥^2 + 6𝑥 + 𝑦^2 − 6𝑦 − 2𝑥𝑦 + 9 Cho 𝑥 − 2𝑦 = 1. Tính giá trị biểu thức 𝐶 = 𝑥^2 + 4𝑦^2 − 3𝑥 − 4𝑥𝑦 + 6𝑦 − 2
𝐴 = (𝑥 + 2𝑦) 2 − (2𝑥 + 2𝑦)(𝑥 + 2𝑦) + (𝑥 + 𝑦) 2 tại 𝑥 = 2021, 𝑦 = 1000
Biến đổi về các hằng đẳng thức, tìm giá trị nhỏ nhất của các biểu thức:
a) 𝐴 = −𝑥^2+ 2𝑥 + 5
b) 𝐵 = −𝑥^2− 8𝑥 + 10
c) 𝐶 = −3𝑥^2+ 12𝑥 + 8
d) 𝐷 = −5𝑥^2+ 9𝑥 − 3
e) 𝐸 = (4 − 𝑥)(𝑥 + 6) f)
𝐹 = (2𝑥 + 5)(4 − 3𝑥)
g) 𝐺 = (2 − 3𝑥)(2𝑥 + 3)
Chứng minh biểu thức sau luôn âm −2𝑥^2+3𝑥−4
Chứng minh biểu thức sau luôn âm −2𝑥2+3𝑥−4
Rút gọn a) 𝐴 = 𝑥^ 2 (𝑎 − 𝑏) + 𝑏(1 − 𝑥) + 𝑥(𝑏𝑥 + 𝑏) − 𝑎𝑥(𝑥 + 1) b) 𝐵 = 𝑥 2 (11𝑥 − 2) + 𝑥 2 (𝑥 − 1) − 3𝑥(4𝑥 2 − 𝑥 − 2)
3𝑥(3𝑥 − 2) − (𝑥 − 1)^2
Bài 3: Chia đa thức đã sắp xếp
1. (𝑥³ − 9 + 27x − 11𝑥² ) : (x – 3)
2. (−3𝑥³ − 9x + 5𝑥² + 15) : (5 – 3x)
3. (3𝑥⁴+ 11𝑥⁴ − 5x² – 19x + 10) : (𝑥 ²+ 3x – 2)
(𝑥−1)3−(𝑥+1)(𝑥2−𝑥+1)−(3𝑥+1)(1−3𝑥)