(3)
a) rút gon biểu thức: A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\) vs \(x>0;x\ne1\)
giúp mk vs
\(\dfrac{2\sqrt{x}}{x-5\sqrt{x}+6}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\) RÚT GON
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\) RÚT GON
cho biểu thức \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
a, rút gon A
b,Tìm x để A = -2
c,Tìm x nguyên để A cũng là số nguyên
Cho biểu thức:
A = -\(\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x\(\ge\)0,x\(\ne\)4
B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a) Rút gon A
b) Tính giá trị của A khi x=36
c) Tìm x để A=-\(\dfrac{1}{3}\)
d) Tìm x nguyên đề để biểu thức A có giá trị nguyên
e) Tìm x để A:B=-2
f) Tìm x để A đạt giá trị nhỏ nhất
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\) RÚT GON
Bài 1: Rút gọn:
a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) với x>1
b) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)với x>1
c) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\) với x>1
d) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)với x ≠ 4, x ≠ 16,x >0
Mng giúp mk nha
rut gon pt
\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
Rút gọn:
1) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
2)\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
3) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
4) \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
Mng giúp e vs ạ, cần gấp :<