\(a,\)
\(2x^2-5x-7=0\)
\(\Leftrightarrow2x^2+2x-7x+7\)
\(\Leftrightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(\left(2x+2\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy 2 pt ko tương đương
\(b,\left(2x-3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\pm2\end{matrix}\right.\)
\(6x^2=24\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy 2 pt tương đương
a: 2x^2-5x-7=0
=>2x^2-7x+2x-7=0
=>(2x-7)(x+1)=0
=>x=7/2 hoặc x=-1
(2x+2)(x+7/2)=0
=>(x+1)(x+7/2)=0
=>x=-7/2 hoặc x=-1
=>Hai phương trình ko tương đương
b: (2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>\(x\in\left\{\dfrac{3}{2};2;-2\right\}\)
6x^2=24
=>x^2=4
=>x=2 hoặc x=-2
=>Hai phương trình ko tương đương