Dùng định nghĩa tính đạo hàm của hàm số y = x 3 tại điểm x tùy ý.
Dự đoán đạo hàm của hàm số y = x 100 tại điểm x.
Giới hạn (nếu tồn tại và hữu hạn) nào sau đây dùng để định nghĩa đạo hàm của hàm số y = f(x) tại điểm x 0 ?
A. lim x → 0 f x + ∆ x - f x 0 ∆ x
B. lim x → 0 f x - f x 0 x - x 0
C. lim x → x 0 f x - f x 0 x - x 0
D. lim x → 0 f x + ∆ x - f x ∆ x
Giới hạn (nếu tồn tại và hữu hạn) nào sau đây dùng để định nghĩa đạo hàm của hàm số y = f(x) tại điểm x 0 ?
A. lim x → 0 f x + ∆ x - f x 0 ∆ x
B. lim x → 0 f x - f x 0 x - x 0
C. lim x → x 0 f x - f x 0 x - x 0
D. lim x → 0 f x + ∆ x - f x ∆ x
1. đạo hàm của hàm số f(x) = 2x - 5 tại \(x_0=4\)
2. đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
3. đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
Bằng định nghĩa, tìm đạo hàm của hàm số sau y = 7 + x – x 2 tại x o = 1
Tính ( bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra: y = x 2 + x tại x 0 = 1
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra: y = x + 1 x - 1 tại x 0 = 0
1) đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
2) đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
Cho hàm số y = f(x) có đạo hàm tại x 0 là f ' ( x 0 ) . Khẳng định nào sau đây sai?
A. Hàm số liên tục tại điểm x0
B. f ' ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0
C. f ' ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x
D. f ' ( x 0 ) = lim x 0 → 0 f ( x 0 + h ) − f ( x 0 ) x 0