Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
BÀi 1: Phân tích đa thức thành nhân tử
a)x3+8x2+17x+10
b)abc+ab+bc+ca+a+b+c+1
c)4x4+81
d)64x4+y4
e)x5+x4+1
f)x+2y-xy-2
g)a2+b2-x2-y2+2ab-2xy
Phân tích đa thức thành nhân tử:
a ) x 2 + x y – x – y b ) a 2 – b 2 + 8 a + 16
Đa thức 25 – a 2 + 2 a b – b 2 được phân tích thành
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)
Bài 1: Phân tích đa thức thành nhân tử:
a) x2 + xy –x – y
b) a2 – b2 + 8a + 16
phân tích đa thức thành nhân tử
x2-y2+a2-b2+2ax+2by
a) Chứng minh nếu x + y + z = 0 thì x 3 + y 3 + z 3 = 3xyz.
b) Áp dụng. Phân tích các đa thức sau thành nhân tử:
P = ( a 2 + b 2 ) 3 + ( c 2 - a 2 ) 3 - ( b 2 + c 2 ) 3 .
Phân tích đa thức thành nhân tử
a( b2 + c2 ) +b( c2 + a2 ) + c( a2 + b2 ) - 2abc - a3 - b3 - c3
Phân tích đa thức thành nhân tử:
a) x(x+y)-5x-5y
b) 3x-5y-6ax+10ay
c) a2-6a-b2+6b
d) 100a2-20a-2b-b2
e) 36x2-12x+1-b2
f) x2-z2+y2-2xy
phân tích đa thức thành nhân tử: (a+b)(a2-b2)+(bc)(b2-c2)+(c+a)(c2-a2)