\(a^6-a^4+2a^3+2a^2\)
\(=\left[\left(a^3\right)^2-\left(a^2\right)^2\right]+2\left(a^2+a^3\right)\)
\(=\left(a^3-a^2\right)\left(a^3+a^2\right)+2\left(a^3+a^2\right)\)
\(=\left(a^3-a^2+2\right)\left(a^3+a^2\right)\)
\(=a^2.\left(a^3-a^2+2\right)\left(a+1\right)\)
\(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a^2-1\right)+2\left(a+1\right)\right]\)
\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)