a: Đặt \(\left(x^2-x+2\right)^2=a\)
Biểu thức trở thành \(a^2-3x^2a+2x^4\)
\(=a^2-x^2a-2x^2a+2x^4\)
\(=a\left(a-x^2\right)-2x^2\left(a-x^2\right)\)
\(=\left(a-x^2\right)\left(a-2x^2\right)\)
\(=\left(x^2-x+2-x^2\right)\left(x^2-x+2-2x^2\right)\)
\(=\left(-x+2\right)\left(-x^2-x+2\right)\)
\(=\left(x-2\right)\left(x^2+x-2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\)
b:
Sửa đề: \(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4\)
Đặt \(\left(-x^2+2x+3\right)^2=a\)
BT trở thành \(3a^2-26x^2a-9x^4\)
\(=3a^2-27x^2a+x^2a-9x^4\)
\(=3a\left(a-9x^2\right)+x^2\left(a-9x^2\right)\)
\(=\left(a-9x^2\right)\left(3a+x^2\right)\)
\(=\left[\left(x^2-2x-3\right)^2-9x^2\right]\left[x^2+\left(x^2-2x-3\right)^2\right]\)
\(=\left(x^2-2x-3-3x\right)\left(x^2-2x-3+3x\right)\left[x^2+\left(x^2-2x-3\right)^2\right]\)
\(=\left(x^2-5x-3\right)\left(x^2+x-3\right)\left[x^2+\left(x^2-2x-3\right)^2\right]\)