1: \(\left(x^2+1\right)^2-4x\left(1-x^2\right)\)
\(=x^4+2x^2+1-4x+4x^3\)
\(=x^4+4x^3+2x^2-4x+1\)
\(=\left(x^2+2x-1\right)^2\)
2: \(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2\)
\(=\left(x^2+6x+10\right)\left(x^2-6x+10\right)\)
3: \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
4: \(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
5: \(64x^4+1=64x^4+16x^2+1-16x^2\)
\(=\left(8x^2+1\right)^2-16x^2\)
\(=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)