Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
cho phương trình $x^4+(1-2m)x^2+m^2-1$
tìm m để phương trình
a)vô nghiệm
b)có 1 nghiệm
c)có 2 nghiệm
d)có 3 nghiệm
f)có 4 nghiệm
giúp mình giải chi tiết 1 chút nhé và giúp mình luôn trong cách trình bày
Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Tập nghiệm bất phương trình: l o g 0 , 5 ( x − 4 ) + 1 ≥ 0 là:
A. 4 ; 9 2
B. ( − ∞ ; 6 )
C. ( 4 ; + ∞ )
D. ( 4 ; 6 ]
Bất phương trình logarit
$$1) \sqrt{log_{1/2}^{2} \frac{2x}{4-x} - 4} \leq \sqrt{5}$$
$$2)log_{2}(x-1)^{2} > 2log_{2} (x^{3} +x +1)$$
$$3)\frac{1}{log_{2}(4x)^{2} +3 } + \frac{1}{log_{4} 16x^{3}-2} <-1$$
$$4)log_{2} (4^{x}+4) < log_{\frac{1}{2}} (2^{x+1} -2)$$
Tìm tập nghiệm của bất phương trình log 2 5 ( x - 4 ) + 1 > 0 .
A. [ 13 2 ; + ∞ )
B. - ∞ ; 13 2
C. 4 ; + ∞
D. 4 ; 13 2
Bất phương trình log 1 2 ( x - 1 ) > l o g 1 4 x 2 có tập nghiệm là
A. R
B. ( 1 ; + ∞ )
C. V ô n g h i ệ m
D. ( - ∞ ; - 1 )
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1