a) Ta có: \(\left(3x+1\right)^3\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=27x^3+27x^2+9x+1\)
b) Ta có: \(\left(2x-\dfrac{1}{x}\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\dfrac{1}{x}+3\cdot2x\cdot\left(\dfrac{1}{x}\right)^2-\left(\dfrac{1}{x}\right)^3\)
\(=8x^3-12x+\dfrac{6}{x}-\dfrac{1}{x^3}\)
c) Ta có: \(\left(y-\dfrac{xy}{3}\right)^3\)
\(=y^3-3y^2\cdot\dfrac{xy}{3}+3y\cdot\left(\dfrac{xy}{3}\right)^2-\left(\dfrac{xy}{3}\right)^3\)
\(=y^3-xy^3+\dfrac{x^2y^3}{3}-\dfrac{x^3y^3}{27}\)
d) Ta có: \(\left(\dfrac{1}{y^2}+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{1}{y^2}\right)^3+3\cdot\dfrac{1}{y^4}\cdot\dfrac{y}{x}+3\cdot\dfrac{1}{y^2}\cdot\dfrac{y^2}{x^2}+\left(\dfrac{y}{x}\right)^3\)
\(=\dfrac{1}{y^6}+\dfrac{3y^3}{x}+\dfrac{3}{x^2}+\dfrac{y^3}{x^3}\)