Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khuong

Mọi người híup mik bài 6 với

loading...

Nguyễn Lê Phước Thịnh
6 tháng 10 2024 lúc 18:50

ĐKXĐ: a>0

\(C=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{a+2\sqrt{a}+1}\)

\(=\left(\dfrac{1}{\sqrt{a}\left(\sqrt[]{a}+1\right)}+\dfrac{1}{\sqrt{a}+1}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

\(=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}}=\dfrac{\left(\sqrt{a}+1\right)^2}{a}\)

ĐKXĐ: x>0; x<>1

\(E=\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{\sqrt{x}+1}{x-1}\right)\cdot\dfrac{\sqrt{x}\left(x-\sqrt{x}+1\right)}{x\sqrt{x}+1}\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

ĐKXĐ: x>=0; x<>1

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{x-2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}-1}{2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

ĐKXĐ: x>0; x<>4

\(D=\left(\dfrac{1}{3\sqrt{x}-6}+\dfrac{1}{x-2\sqrt{x}}\right):\left(\dfrac{1}{6}+\dfrac{1}{2\sqrt{x}}\right)\)

\(=\left(\dfrac{1}{3\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\cdot3}\right)\)

\(=\dfrac{\sqrt{x}+3}{3\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{3+\sqrt{x}}{6\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+3}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{6\sqrt{x}}{\sqrt{x}+3}=\dfrac{2}{\sqrt{x}-2}\)

ĐKXĐ: x>0; x<>4

\(F=\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{1}{x}\right)\cdot\dfrac{x-4}{6}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{x}\right)\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6}\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6}\)

\(=\dfrac{2}{x}\cdot\dfrac{\left(\sqrt{x}+2\right)}{6}=\dfrac{\sqrt{x}+2}{3x}\)

 

ĐKXĐ: x>0; x<>1

\(Q=\left(\dfrac{x+1}{\sqrt{x}}-2\right)\cdot\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right)\)

\(=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}}\cdot\left(\dfrac{\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\cdot\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)


Các câu hỏi tương tự
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
DUTREND123456789
Xem chi tiết
LÊ LINH
Xem chi tiết
nguyễn hà quyên
Xem chi tiết
Lê Bảo Ngọc
Xem chi tiết
Thu Thảo Tran
Xem chi tiết