a/\(-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{4}{3}\right)\)
\(x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b/\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}\)
\(a.-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{\dfrac{1}{3}}{\dfrac{-4}{3}}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b)
\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}=3\\x=-\dfrac{4}{2}=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)
`a) -4/3x = 1/3`
`x=1/3:(-4/3)`
`x=-1/4`
`b) |x-1/2| = 5/2``
`<=>x-1/2 = 5/2` hay `x-1/2=-5/2`
`<=>x=5/2 +1/2` hay `x=(-5/2)+1/2`
`<=>x=3` hay `x = -2`
Vậy `x in {3;-2}`.