Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

mình sẽ tick sau

Câu 3:

a: Xét ΔSCD có

F là trung điểm của CD

J là trọng tâm

Do đó: \(\frac{SJ}{SF}=\frac23\)

=>Đúng

b: Xét ΔSAB có

SE là đường trung tuyến

I là trọng tâm

Do đó: S,I,E thẳng hàng

=>\(SI=\frac23SE\)

Xét ΔSFE có \(\frac{SI}{SE}=\frac{SJ}{SF}\left(=\frac23\right)\)

nên IJ//EF

mà EF⊂(ABCD)

nên JI//(ABCD)

=>Đúng

c: BC//AD

AD⊂(SAD)

BC không thuộc mp(SAD)

Do đó: BC//(SAD)

Ta có: \(AE=EB=\frac{AB}{2}\)

\(DF=FC=\frac{DC}{2}\)

mà AB=CD

nên AE=EB=DF=FC

Xét tứ giác BEFC có

BE//FC
BE=FC

Do đó: BEFC là hình bình hành

=>EF//BC

=>BC//(SEF)

=>Đúng

d: Sai

Câu 4:

a: Sửa đề: O là tâm của đáy ABCD

ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔDAB có

I,O lần lượt là trung điểm của DA,DB

=>IO là đường trung bình của ΔDAB

=>IO//AB

mà OI không thuộc mp(SAB) và AB⊂(SAB)

nên OI//(SAB)

=>Đúng

b: Vì OI//AB

mà AB//CD
nên OI//CD
mà OI không thuộc mp(SCD) và CD⊂(SCD)

nên OI//(SCD)

=>Đúng

c: Vì \(\frac{DI}{DA}<>\frac{DE}{DC}\)

nên IE không song song với AC

=>Sai

d: Gọi K là giao điểm của DG và SA

Xét ΔSAD có

G là trọng tâm

DG cắt SA tại K

Do đó: K là trung điểm của SA

Xét ΔSAD có

K là trung điểm của SA

G là trọng tâm

Do đó: \(DG=\frac23DK\)

\(\frac{DG}{DK}<>\frac{DE}{DC}\left(\frac23<>\frac13\right)\)

nên GE không song song với KC

mà KC⊂(SBC)

nên GE không song với mp(SBC)

=>SAi


Các câu hỏi tương tự
Nguyễn VIP 5 sao
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Quang Trung Dũng
Xem chi tiết
Quangstar
Xem chi tiết
Nghi Trần
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hà Phan Thanh
Xem chi tiết
Lan Anh Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Duy Huỳnh Nguyễn Hoàng
Xem chi tiết