\(M=1+3+3^2+3^3+..+3^{98}+3^{99}\)
\(3M=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(3M-M=2M=3^{100}-1\)
=> \(M=\dfrac{3^{100}-1}{2}\)
\(N-M=\dfrac{3^{100}-3^{100}+1}{2}=\dfrac{1}{2}\)
Giải:
M=1+3+32+33+...+398+399
3M=3+32+33+34+...+399+3100
3M-M=(3+32+33+34+...+399+3100)-(1+3+32+33+...+398+399)
2M=3100-1
M=3100-1/2
⇒N-M
=3100/2 - (3100-1)/2
=(3100-3100+1)/2
=1/2
Chúc bạn học tốt!