\(=\left[\dfrac{\sqrt{7}-1}{\sqrt{3}\left(\sqrt{7}-1\right)}+\dfrac{\sqrt{3}-1}{\sqrt{7}\left(\sqrt{3}-1\right)}\right]\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\left(\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{7}}\right)\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\dfrac{\sqrt{3}+\sqrt{7}}{\sqrt{21}}\cdot\dfrac{\sqrt{21}}{\sqrt{3}+\sqrt{7}}=1\)