Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anime

\(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=7x+9\\x\left(y-x+1\right)=3\end{matrix}\right.\)

Xyz OLM
1 tháng 6 2023 lúc 1:02

ĐK : \(x\ne0\)

Ta có \(x^4+2x^3y+x^2.y^2=7x+9\)

\(\Leftrightarrow x^2.\left(x+y\right)^2=7x+9\)

\(\Rightarrow x\left(x+y\right)=\sqrt{7x+9}\left(x\ge-\dfrac{9}{7}\right)\)(1)

Lại có \(x.\left(y-x+1\right)=3\Leftrightarrow x.\left(x+y\right)=2x^2-x+3\) (2) 

Thay (2) vào (1) ta được \(2x^2-x+3=\sqrt{7x+9}\)

\(\Leftrightarrow2x^2-x-1=\sqrt{7x+9}-4\)

\(\Leftrightarrow\left(x-1\right).\left(2x+1\right)=\dfrac{7.\left(x-1\right)}{\sqrt{7x+9}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2x+1=\dfrac{7}{\sqrt{7x+9}+4}\end{matrix}\right.\)

Với \(2x+1=\dfrac{7}{\sqrt{7x+9}+4}\) (*)

\(\Leftrightarrow2x=\dfrac{3-\sqrt{7x+9}}{\sqrt{7x+9}+4}\)

\(\Leftrightarrow2x+\dfrac{7x}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\2+\dfrac{7}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (3) vô nghiệm nên phương trình (*) vô nghiệm

Với x = 1 => y = 3 

Tập nghiệm (x;y) = (1;3)


Các câu hỏi tương tự
kietdvjjj
Xem chi tiết
huong giang
Xem chi tiết
Trần Vũ Phương Thảo
Xem chi tiết
minh ngọc
Xem chi tiết
DUTREND123456789
Xem chi tiết
mynameisbro
Xem chi tiết
Mèo Dương
Xem chi tiết
ĐỖ NV1
Xem chi tiết
mynameisbro
Xem chi tiết