\(\left(C\right):\left(x-2\right)^2+\left(y-1\right)^2=25\)
\(\Rightarrow\left(C\right)\) có tâm \(I\left(2;1\right)\) ; Bán kính \(R=5\)
\( \left(C\right)//d:5x-12y+67=0\)
nên \(\Delta:5x-12y+m=0\left(m\ne67\right)\)
Vì \(d\) có \(VTPT\overrightarrow{n}=\left(5;-12\right)\) cũng là \(VTPT\) của \(\Delta\)
\(R=d\left(I,\Delta\right)=\dfrac{\left|5x_I-12y_I+m\right|}{\sqrt{5^2+\left(-12\right)^2}}\Leftrightarrow\dfrac{\left|5.2-12.1+m\right|}{13}=5\)
\(\Leftrightarrow\left|-2+m\right|=65\)
\(\Leftrightarrow\left[{}\begin{matrix}-2+m=65\\-2+m=-65\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=67\left(ktm\right)\\m=-63\left(tm\right)\end{matrix}\right.\)
Vậy pt tiếp tuyến là \(5x-12y-63=0\)
(x-2)^2+(y-1)^2=25
=>R=5; I(2;1)
(d')//(d) nên (d'): 5x-12y+c=0
Theo đề, ta có; d(I;(d'))=5
=>\(\dfrac{\left|5\cdot2+\left(-12\right)\cdot1+c\right|}{\sqrt{5^2+12^2}}=5\)
=>|c-2|=65
=>c=67 hoặc c=-63