\(a,=5^3:5^2=5\\ b,=\left(\dfrac{3}{4}\right)^{5-3}=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\\ c,=1728-512=1216\\ d,=x^{10}:x^8=x^2\\ e,=\left(-x\right)^{5-3}=\left(-x\right)^2=x^2\\ f,=\left(-y\right)^{5-4}=-y\)
\(a,=5^3:5^2=5\\ b,=\left(\dfrac{3}{4}\right)^{5-3}=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\\ c,=1728-512=1216\\ d,=x^{10}:x^8=x^2\\ e,=\left(-x\right)^{5-3}=\left(-x\right)^2=x^2\\ f,=\left(-y\right)^{5-4}=-y\)
Làm tính chia:
a) \(5x^2y^4:10x^2y\)
b)\(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5\)
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
c) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
d) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\(\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3\)
b)\(\left(x+y\right)^5-x^5-y^5\)
c)\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
d)\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)-c\left(b-c\right)\left(a-c\right)\)
e) 2bc(b+2c)+2ac(c-2a)-2ab(a+2b)-7abc
f)3bc(3b-c)-3ac(3c-a)-3ab(3a+b)+28abc
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)
Làm phép chia
a. \(\left(20x^4y-25x^2y^2-3x^2y\right):5x^2y\)
b. \(\left(15xy^2+17xy^3+18y^2\right):6y^2\)
c. \(\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(y-x\right)^2\)
d. \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
Làm tính chia :
a) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
b) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
c) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
Làm tính chia :
\(\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(y-x\right)^2\)
Gợi ý : Có thể đặt \(x-y=z\) rồi áp dụng quy tắc chia đa thức cho đơn thức
làm tính chia
\(\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(y-x\right)^2\)
gợi ý có thể đặt x-y=z rồi áp dụng qui tắc chia đa thức cho đơn thức
Tìm x, biết:
\(\left(x^2+\dfrac{1}{2}x\right):\dfrac{1}{2}x-\left(2x+1\right)^3:\left(2x+1\right)^2+\left(x+1\right)^5:\left(x+1\right)^2=0\)